LBL-37860

Making Global Illumination User-Friendly

Gregory J. Ward
Lawrence Berkeley Laboratory

ABSTRACT

Global illumination researchers tend to think in terms of mesh density and sam-
pling frequency, and their software reflects this in its user interface. Advanced rendering
systems are rife with long command lines and parameters for tuning the sample densities,
thresholds and other algorithm-specific variables, and the novice user is quickly lost in a
sea of possibilities. This paper details a successful effort of making one such global
illumination system usable by people who understand their problems, even if they do not
understand the methods needed to solve them, through an assisted oracle approach. A
single program is introduced to map a small set of intuitive control variables to the
rendering commands and parameter settings needed to produce the desired output in a
reasonable time. This new executive program then serves as the basis for a graphical
user interface that is both friendly in its appearance and reliable in its performance.
Finally, we conclude with some future directions for improving this interface.

1. Introduction

As rendering and especially global illumination techniques advance, the number of user-settable rendering
parameters tends to increase. This is because most algorithms have associated sampling rates that are not
determined by any basic property of the rendering equation, but are rather a function of the modeled
environment and user requirements. for output quality. Therefore, the programmer provides the user with
parameters to control the calculations so that the best trade-off between time and accuracy can be achieved
for a given application.

Such flexibility may be perceived as unwanted complexity by the novice user, and setting the parameters
correctly to obtain the best result often requires an intimate understanding of the underlying algorithms. It
is little wonder that program authors and their close associates have the most success with advanced
rendering software, since they are the only ones who can make it behave properly.

The real difficulty in global illumination is mapping a given set of algorithms to a given problem in an
efficient way. Current rendering software is a lot like a box of tools, and if it is not accompanied by the
requisite expertise, nothing good can be built from it. What we need to do as system designers is empower
the user by supplying the needed expertise along with the tools so that they can build their own house, or
museum, or space station, or whatever. Other researchers have suggested this in previous papers and the
notion of an oracle has been introduced, which is a computational agent that decides what to sample and
where in a global illumination calculation [Drettakis91].

Creating robust oracles is a very difficult problem, however, and requires that some limited subset of "com-
mon sense" be programmed into these agents. For example, the user may know the geometric detail con-
tained in a model, but a simple count of polygons is usually a poor measure, since it can be thrown off by a
relatively smooth surface that is finely tesselated or a small number of polygons all intersecting each cther.
If the geometric detail is important to the setting of calculation parameters, an oracle will have trouble
deciding what to do if it does not have common sense enough to determine the real detail level.

An alternate approach is to analyze what is being computed, and find ways to adjust the calculation
automatically to some goal. In the case of synthetic images, we must find an accuracy metric that tells us

how far we have to go in our progressive calculation. This can perhaps be done for a Monte Carlo path-
tracing simulation, but we still do not have a good handle on what does and does not matter to the user in
the resulting image. The metrics we can compute, such as RMS error, have been shown to have little
correspondence to quality or correctness as perceived by a human observer. Other metrics, such as those
described in [Rushmeier95], are still in the experimental stages. Even if we find and accept a good metric
for image quality, we are still left with the problem of mapping our algorithms to progressive approaches
that work well with this metric. For example, we may find that geometric shape is very important to human
observers. If we are using progressive refinement radiosity, the geometry displayed remains constant,
while the illumination changes. No amount of iteration will improve our polygonal model, so we end up
refining along the wrong axis for a metric that is sensitive to geometry.

In this paper, we demonstrate an assisted oracle approach, which leans on the user to find out certain
common-sense things about the model, then employs a simple set of rules to arrive at the appropriate calcu-
lation parameters from this information. The user is allowed general control over things such as "image
quality", which loosely translates to visual accuracy, and output resolution, but is freed from having to
understand the details of algorithms employed in the calculation. And by relying on the user’s common
sense, the oracle is freed from having to understand basic things about the real world.

2. Basic Concepts

Although we restrict ourselves in this paper to the context of a specific rendering system, we introduce the
following concepts that may be applied readily to other global illumination calculations.

Executive Control Program
Although toolbox systems provide the greatest flexibility, they are difficult to learn and can be
difficult to run even for the experienced user. By introducing an executive program, we sim-
plify the most frequently used operations by combining them into a single rendering command.
Doing the job well, however, requires setting the many parameters of the constituent programs
very carefully. Freeing the user of this burden is at least as important as simplifying the run-
ning of the software.

Intuitive Control Variables
In order to free the user from having to think in terms of global illumination algorithms and
procedures, we must distill a set of intuitive control variables that are both comprehensive and
comprehensible. This actually turns out to be much easier than it sounds, though we can offer
no foolproof method for mapping common-sense parameters to algorithmic ones. Such map-
ping requires an expert in the particular rendering software who can code this knowledge into
a working program.

Simulation Zones
The simulation zone is a concept we introduce to isolate a specific set of rendering parameters.
A zone is a set of simulation conditions that includes a complete scene description, a single
lighting condition, and a region of interest (usually a room or an object). Within a zone there
may be multiple views specified, but the illumination and other gross scene conditions remain
constant. (Small objects may be animated, so long as it does not have a large effect on the
lighting.) By focusing on one zone at a time, it is possible to derive a set of reliable rendering
parameters.

Graphical User Interface for Rendering
The concept of a GUI for rendering is nothing new, but the design of such an interface usually
requires much attention and many trials. We show in this paper how a GUI can be placed on
top of an executive control program with very little thought or effort, yielding excellent results.
This is because there is a very natural correspondence between the intuitive control variables
and the controls of a GUI.

The specific example we explore in this paper is a program called rad, which is a recent addition to the
Radiance lighting simulation and rendering system [Ward94]. Rad takes a small number of intuitive
values and combines this information with some gleanings from the compiled scene description to assign

x

all of the various parameters that control the simulation. We start by enumerating some of these algo-
rithmic parameters and illustrating how difficult they are for the common user to set, then show how we
extracted a more intuitive set of control variables. Next, we show how easily these variables can be
attached to a GUI. Finally, we discuss the need for a diagnostic tool to troubleshoot problem images,
which we leave for future exploration.

3. RADIANCE Calculation Parameters

Rendering Parameter Interpretation Default Value
-pj pixel jitter 0.67
-ps pixel sample 4
-pt pixel threshold 0.05
-dt direct threshold 0.05
-dc direct certainty 0.5
-dj direct jitter 0.0
-ds direct sampling 0.25
-dr direct relays 1
-dp direct pretest density 512
-sj specular jitter 1.0
-st specular threshold 0.15
-av ambient value 0.00.00.0
-ab ambient bounces 0
-aa ~ ambient accuracy 0.2
-ar ambient resolution 32
-ad ambient divisions 128
-as ambient super-samples 0
-Ir: limit reflection 6
-lw limit weight 0.005

Table 1. Rendering algorithm parameters and default values.

Table 1 shows an abbreviated list of the program parameters that control the rendering process in Radi-
ance, and their default values. The primary author of this software can look at these parameters and under-
stand what they mean and why they are there, and by experience how to set them for various rendering
situations. However, the average user looks at these with a very puzzled expression and says, '"Well, I
guess I could try changing this one or that one to see what happens," and off they go.

Through no fault of their own, the users take what from the programmer’s perspective seems like a care-
fully crafted set of tools, and they start banging on things with them. How could we expect anything dif-
ferent? No one has taught them what these things mean. The manual pages are long and difficult to fol-
low, and the research papers explaining what is behind the command line are even worse. People have
been given the tools, but no real guidance in their application. Even the author had to experiment at one
time to learn what settings were reasonable and which ones produced good results under specific cir- -
cumstances; this knowledge is very difficult to impart.

Another stumbling block for new Radiance users is that the software is broken into many independent
modules, following the UNIX toolbox paradigm. There is no single user interface even on the command
line, and users must learn about many different programs before seeing their first image. There are several
CAD translators and object generator programs to assist in scene creation. There is a program to compile
the scene description, and one to render the scene into an unfiltered image, and one to reduce the image and
perform anti-aliasing, and conversion and display programs to put the image in a common format or
display it on the monitor. Unless the user’s mind works like the programmer’s, mastering the intricacies of
Radiance seems more tedious and painful than intuitive.

Our first goal in developing a user interface to this software is to replace the tedium and confusion with
simplicity and clarity. We do this by unifying the operation of the software and replacing the nasty
algorithm-derived parameters with more intuitive variables based on common sense. A single command
taking a short input file (less than 1K, typically) can control the core rendering modules of Radiance and
put them into a consistent, logical interface. Next, we can put a GUI on top of this new executive program
so that the user does not even have to think about what to type, and we can hook in other functionality that
is difficult to handle in a single command line program.

4. RAD Contro! Variables

The key to designing a good user-assisted oracle is finding a minimal set of intuitive control variables that
tells us exactly what we need to know from the user in order to run the software efficiently. The purpose is
to minimize the number of decisions the user has to make for the majority of cases. The number of control
variables must be small, and the possible values for these variables must also be small or arbitrary. (L.e.ifa
value is irrelevant to the calculation, such as the output file name, the user is given freedom to make arbi-
trary assignments. If a value affects the calculation, however, the user may be restricted to a choice of
"high," "medium" or "low" rather than some numeric value.) We may keep the idea of default values
around, but we want the user to feel comfortable changing these settings at will. To arrive at appropriate
variables for a good user-assisted oracle, we must ask ourselves two questions:

1. What does the user wish to control?
2. What additional information do we require from the user to perform the simulation?

In answer to the first question, most users want to control the time versus quality tradeoff. They also want
to control the views from which the renderings take place, and probably the size and resolution of the out-
put. After that, the typical user is just not very interested in the rendering process.

Unfortunately, the oracle in rad is not smart enough to figure out the rest on its own, so we still need the
user to give us some additional clues to enable us to do a good job rendering the scene in a reasonable time.
Obviously, we need to know input file name(s). Rad also asks for intermediate and output file names,
though these will be assigned default values if none are given. Since we are going to maintain a compiled
version of the scene, we also need to know what other files the scene depends on, similar to the information
required by the UNIX make facility.

Once the file information is settled, rad needs to know a little bit about the scene geometry and lighting for
the specific area being rendered, which we call a zone. It was decided early on that a given set of variable
settings should apply to just one zone, since the geometry and lighting could vary too much from inside to
outside or even one room to another in a large model. Dividing the rendering task into zones greatly
simplifies the job of setting rendering parameters in Radiance, which depend on geometric complexity and
lighting variability.

A zone is specified by type, interior or exterior, and dimensions. Rad uses a 3-dimensional, axis-aligned
box in its zone specification, though the precise boundaries are of little importance. The primary informa-
tion derived from the zone is a relative "scale" for rendering parameters. The scale simply tells us the dis-
tance at which lighting ceases much to matter. This information is extracted from the overall size of the
zone plus the geometric detail as specified in a separate variable. Secondarily, a zone provides a con-
venient mechanism for establishing default viewpoints to get the user started looking at their environment.

Four additional variables are used to assess the difficulty of the lighting calculation for the given zone.
These are the lighting variability, the number of indirect reflections, and the image exposure. Variability is
a qualitative setting that indicates how much light levels vary in the zone, i.e. the dynamic range of light
landing on surfaces. This is important for controlling the number of rays used in sampling indirect lighting.
A second variable tells rad how many diffuse reflections are critical to the lighting of a space. If a direct
lighting system is used, this is set to 0. For an indirect fluorescent system, it is set to 1. For some daylight
shelf systems, the setting may be 2. A third variable tells rad what multiplier to use for exposing the final
images. This can be done automatically, but the results are usually not as good, and rad uses this value
also to set the "ambient level" for the zone, which is a function of the final light levels and therefore cannot

Variable Interpretation Type Default Value
materials materials file(s) string -

scene scene file(s) string -

illum illum object file(s) string -

objects requisite file(s) string -

view image view(s) string X (from maximum X))
up view up vector string - (effectively +Z)
QUALITY target image quality qualitative Low
RESOLUTION output image resolution integer 512

PICTURE output file root string input file root
OCTREE octree (compiled scene) file string input file root + .oct
AMBFILE ambient (indirect irradiance) file string -

OPTFILE options file string -

REPORT report interval and file string -

ZONE region of interest string bounding cube, exterior
EXPOSURE image exposure real - (automatic)
PENUMBRAS penumbras important? boolean False

DETAIL geometric detail qualitative Medium
INDIRECT # important interrefiections integer 0

VARIABILITY variation in illumination qualitative Low

oconv oconv options string -

mkillum mkillum options string -

render rendering options string -

pfilt pfilt options string -

Table 2. Rad control variables and default values.

be determined in advance except for very simple, closed environments. Finally, a fourth variable indicates
whether or not rendering penumbras is important in this zone. Turning penumbras off does not mean that
area sources are treated as points; it only means that the quality of soft shadows is less important than
rendering time in this model.

You might at this point be wondering why rad could not somehow figure out all this additional stuff and
not bother the user about it? In principle, it could. This is the idea behind an "oracle" as recalled in the
introduction. Unfortunately, writing omniscient oracles requires the kind of common sense reasoning that
is easy for people familiar with a given environment, but difficult for computers. By the nature of the
situation being modeled, the user knows whether to expect a high degree of variability in the lighting or a
low one. Figuring this out automatically requires actually rendering the space at some level of detail, and
~ thus solving the problem in order to begin. It may be possible to do this iteratively, but it is more compli-
cated, takes longer and the result is no more reliable than asking the user. The question we have to ask
when designing an interface is, "What can be done for the user in a way that is more pleasant than it is
aggravating?”' An interface that takes twenty minutes to come up with a default parameter setting is just
plain annoying. As it is, rad already derives some information from the scene files, which may take
several seconds to process if the scene has not already been compiled.

Table 2 shows a list of the rad variables, interpretation, type and default values. Lower case variables may
have multiple settings, which are usually just concatenated together. Upper case variables may have only
one valid setting.

Variables above the horizontal division are considered user control settings. In addition to the control of
input files, views, image quality and output resolution, the user may set intermediate and output file names.

Variables below the horizontal division are considered program help settings, i.e. things that rad asks the
user in order to determine what rendering parameters will work for this environment. These are the zone,
detail, variability, indirect, exposure and penumbra settings we spoke of earlier. As a back door for expert

-6-

users, variables are also provided for adding or overriding options to specific Radiance modules.

5. What Does RAD Do?

Once rad gets all this information, what does it do, exactly? Well, it depends on how it is invoked, but the
usual action is as follows:

1. Compute default values for unspecified variables.
2. Derive rendering and filtering module parameters.
3. Recompile scene if necessary.

4. Render and filter each view.

Steps 1 and 2 are always carried out. Step 3 usually follows, unless "no action" is specified. Step 4
includes such subtleties as recovering aborted renderings, and may be replaced by an interactive or batch
rendering of a single view if desired. Other options control what is printed on the standard output, if any-
thing. (The default is to print each command as it is executed.) There is also a "touch" option for bringing
file times up to date without actually doing anything, which is sometimes handy for avoiding overreactions
to small changes.

To give an example of using rad on a real rendering problem, Listing 1a shows a typical rad input file, and
Listing 1b shows the default values for unassigned variables as computed in Step 1. Listing 2 shows the
commands executed by rad with their parameters.)

mat= iesroom.mat

scene= iesroom.rad extras.rad

scene= ceilingA.rad taskC.rad windows.rad
obj= terminal.rad typeA.rad typeA_cross.rad
ZONE=1 015020 010
AMB=verl.amb

VAR=Low

EXP=1

QUA= Med

PEN= True

RES= 640 480

view= west -vf west.vp

view= efish -vf efish.vp

Listing 1a. Example rad input file, "verl.rif".

OCTREE-= verl.oct
PICTURE= verl
INDIRECT=0
DETAIL= Medium

Listing 1b. Computed default values for unassigned rad variables.

How was the transformation of Listing 1 into Listing 2 accomplished by rad? Without going into detail,
there are three separate procedures for Step 2, corresponding to the three possible settings of the QUALITY
variable, Low, Medium and High. The Low procedure makes every possible compromise in quality to
achieve the fastest rendering times. This setting is best used for looking at geometry and picking views.
The Medium procedure tries to do a reasonable job without taking too long. This setting is OK for work in
progress where accuracy is not critical. The High procedure turns up parameters as necessary to achieve
good quality results, even if the calculation will be slow. This setting is appropriate for presentation or
publication images.

oconv jesroom.mat iesroom.rad extras.rad ceilingA.rad taskC.rad
windows.rad > verl.oct

rpict -vf west.vp -x 1280 -y 960 -ps 3 -pt .08 -dp 512 -ar 22 -ds .2 -dj .5
-dt.1 -dc .5 -dr 1 -sj .7 -st .1 -af verl.amb -aa .25 -ad 196
-as 0 -av 0.5 0.5 0.5 -Ir 6 -lw .002 verl.oct > verl_west.raw

pfilt-1-e1-r1-x/2-y/2 verl_westraw > verl_west.pic

rm -f ver]_west.raw :

rpict -vf efish.vp -x 1280 -y 960 -ps 3 -pt .08 -dp 512 -ar 22 -ds .2 -dj .5
-dt.1-dc.5-dr1 -sj.7 -st.1 -af verl.amb -aa .25 -ad 196
-as 0 -av 0.5 0.5 0.5 -Ir 6 -lw .002 verl.oct > verl_efish.raw

pfilt-1-e 1 -r 1 -x/2 -y /2 verl_efish.raw > verl_efish.pic

rm -f verl_efish.raw

Listing 2. Radiance commands executed by rad.

There is very little point in describing these routines in any detail, but pseudocode for the medium quality
procedure is included in the Appendix for those who are curious. What is significant is that these three
short routines embody much of the author’s knowledge about Radiance rendering and what works best in a
given situation. As awkward as they may look, they are a form of expert knowledge, and it would have
been impossible to write them without years of experience using this software. Initially, it seemed that
coding this knowledge would be impossible, but it turned out instead to be cathartic.

rpict -vf west.vp -x 1280 -y 960 -ps 2 -pt .08 -dp 1024 -ar 45 -ds .2 -dj.5
-dt.1 -dc .5 -dr 1 -sj .7 -st .1 -af verl.amb -aa .25 -ad 196
-as 0 -av 0.5 0.5 0.5 -Ir 6 -lw .002 verl.oct > verl_west.raw

Listing 3. Rendering command after increasing DETAIL to "High".

It is fun to change one of the rad variables to see how it affects the rendering parameters. Since entirely
different procedures are used for the three quality settings, changing this variable obviously has the biggest
effect. Let us look instead at what happens when we change a minor variable such as the DETAIL setting,
We will take it from the default setting of "Medium" to "High". Listing 3 shows the first rpict command
with its new options. Note how only a few of the parameters change: the pixel sampling density (-ps), the
direct presampling density (-dp), and the ambient resolution (-ar). It would have taken a Radiance expert
to figure out which options to change and which to leave alone, but with rad, we only had to know that our
scene is now more detailed.

Through this kind of experimentation, it is even possible for the user to gain some knowledge about the
Radiance parameters without having to waste hours on bad renderings.

6. Putting a Graphical User Interface on RAD

Now that we have a user-friendly command line interface, we would like to take it one step further and
provide a GUI for Radiance rendering. This turns out to be both easy and hard. It is easy in the sense that
there are nice tools for building GUT's such as Tcl/Tk [Ousterhout94], which do most of the work for you.
It is hard in the sense that takes about 50 Kbytes of interface code and another 50 Kbytes of help screens
for an interface that manipulates about 1 Kbyte of rad control data. Fortunately, developing a GUI also
allows us to add some functionality that we could not include in a single command line, such as image
display and conversion. In the future, we may hook other tools to the interface as well; thus it may serve as
a central point for running the entire software suite.

The current rad interface, called trad, is broken into seven interactive screens, which group functions into
convenient categories. Table 3 lists the screen names, their functions, and which rad variables they may
modify. Figure 1 shows a typical trad screen. The mode buttons are arranged in a constant area of the
interface along the right hand side, together with HELP and QUIT buttons. A second constant area along

Screen Function Modifies

File Load/save Rad Input Files All

Scene Specify input files OCTREE, materials, il-
lum, scene, objects

Zone Edit zone-related variables ZONE, DETAIL, IN-

' ‘DIRECT, VARIABILI-

TY, EXPOSURE

Views Edit views view, UP, PICTURE,
RESOLUTION

Options Edit rendering options QUALITY, PENUM-
BRAS, AMBFILE,
OPTFILE, REPORT,
oconv, mkillum, render,
pfilt

Action Start interactive or batch rendering None

Results Display/convert/print images None

Table 3. Trad screens and functions.

Figure 1. Trad Zone screen, one of seven such screens determined by the mode button select-
ed on the right,

the bottom is used for messages. The rest of the interface will change depending on which mode (screen)
is selected. In the screen shown, the user has the option of changing the ZONE type and limits, the
DETAIL, INDIRECT, and VARIABILITY settings, and the EXPOSURE value. All of these variables give
details needed by rad to efficiently render a particular zone, thus they are logically grouped together. The
"Copy" and "Revert" buttons in the lower right of the Zone screen may be used to selectively load the vari-
ables on this screen from another rad input file, or to return to the original settings from this file, respec-
tively. These buttons are quite useful, and they appear on all of the trad screens that affect rad variables.

Context-sensitive help is provided through a help facility by control-clicking on any of the trad buttons or
windows. It is assumed that the user has a working knowledge of Radiance and especially rad, but the
GUI itself can be learned very quickly by calling on help whenever something is not understood.

7. Conclusion and Future Work

We have presented a user-friendly approach to rendering with advanced global illumination algorithms,
and demonstrated the concept of a user-assisted oracle for setting calculation parameters. The system
described works well and is accepted by even the most skeptical users once they give it a try. Even the
author of the Radiance package prefers the new control program to the old manual method of rendering via
pipes and monster command lines.

Future work shall continue in two areas. First, the GUI shall be linked to additional tools, such as CAD
programs and translators on the input side and analysis tools on the output side. Second, a picture diagnos-
tic tool shall be created to provide additional expertise in correcting problem renderings.

Even with the user-assisted oracle in rad, there are occasions when the rendering output is less than satis-
factory, and the average user may have difficulty correcting such problems without deeper understanding
of what can go wrong. A diagnostic tool would help the user to identify the nature of the problem with
comparisons to other pictures with the same artifacts. The tool would then suggest or implement changes
to the rad input file to correct these problems. This returns us to the iterative, trial and error approach we
sought to avoid with our interface in the first place, but it should only be needed in exceptional cases, and
rerendering with some intelligent changes is better than giving up or living with bad output.

Designing a good user interface to advanced rendering algorithms is not as simple as deciding what color
buttons look best. It really requires an expert to sit down and codify the knowledge that permits him or her
to create beautiful output with a given set of tools, so that less experienced users might do the same. We
have shown that there is at least one path towards.this goal. We believe there are many others, and
encourage our fellow researchers to find them.

References

[Drettakis91]
Drettakis, George, Eugene Fiume, ‘‘Structure-Directed Sampling, Reconstruction, and Data
Representation for Global Illumination,’’ Proceedings of the Second Eurographics Workshop on
Rendering, Barcelona, 13-15 May 1991.

[Ousterhout94]
Ousterhout, John, Tcl and the Tk Toolkit, Addison-Wesley Professional Computing Series, 1994.

[Rushmeier95]
Rushmeier, Holly, G. Ward, C. Piatko, P. Sanders, B. Rust, ‘‘Comparing Real and Synthetic Images:
Some Ideas About Metrics,”’ submitted to the Sixth Eurographics Workshop on Rendering, Dublin,
Ireland, June 1995.

[Ward94]
Ward, Gregory, ‘‘The RADIANCE Lighting Simulation and Rendering System,”’ Computer Graph-
ics, July 1994, '

Appendix

procedure SET_MEDIUM_QUALITY_OPTIONS begin
/* set pixel sampling, direct presampling, and ambient resolution */
D = size of scene bounding cube / average dimension of ZONE
switch (DETAIL)
case LOW:
if (PENUMBRAS) then
option("-ps 4')
else
option("-ps 8")
endif
option('-dp 256 -ar %d", 8*D)
break

case MEDIUM:
if (PENUMBRAS) then
option("-ps 3')
else
option('-ps 6')
endif
option("-dp 512 -ar %d", 16*D)
break
case HIGH:
if PENUMBRAS) then
option{"-ps 2"
else
option(*'-ps 4'")
endif
option("-dp 1024 -ar %d", 32*D)
break
endswitch

-10-

option('-pt .08") /* pixel threshold for medium quality */

if (PENUMBRAS) then
option("-ds .2 -dj .5")
else
option("-ds .3")
endif
option(*-dt .1 -dc .5 -dr 1 -sj.7 -st .1")
if (INDIRECT > 0) then
option("-ab %d", INDIRECT)
endif
if (defined(AMBFILE)) then
option("-af %s", AMBFILE)
endif
switch (VARIABILITY)
case LOW:
option('-aa .25 -ad 196 -as 0")
break
case MEDIUM:
option(''-aa .2 -ad 400 -as 64")
break
case HIGH:
option("-aa .15 -ad 768 -as 196")
break
endswitch
A = 0.5/EXPOSURE
option("'-av %f %f %f", A, A, A);
option("-Ir 6 -lw .002")
if (defined(RENDER)) then
option(RENDER)
endif

/* set direct subsampling and jitter */

/*set direct and specular sampling for medium quality */
/* set indirect bounces */

/* set ambient file */

/* set indirect sampling */

/* set ambient value */

/* add user-specified rendering options */

end SET_MEDIUM_QUALITY_OPTIONS

